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Nuclear Field Theory with Chiral Symmetry on a
Calabi± Yau Manifold
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The purpose of this contribution is to show how a nuclear field theory follows
naturally from the structure of four-dimensional Riemannian geometry. A
Yang±Mills field is introduced by constructing fibers that include all possible
exchanges of spin, parity, and charge such that the collective quantum numbers
remain the same. In this way O (4) internal symmetry transformations are found
and a connection is obtained by exponentiation of a CP-invariant operator C
associated with the ground state. The metric is Calabi±Yau and Einstein. Carbon-
13 is chosen as an example because it is the lightest nucleus to exhibit small spin
mutations even though there is no deformation parameter in the O (4) commutation
relations. Instead, a supersymmetric transformation replaces a quantum group.
Mirror symmetry is also discussed and because a density functional approach is
used it is possible to regard the nucleus as a statistical ensemble.

1. INTRODUCTION

de Wet (1996) considered an example of how a Z2-graded algebra,

specifically the Lie algebra of O (4), leads naturally to the well-known angular
momentum matrices s i of a coupled system of P protons and N neutrons,

namely

s i 5 EN ^ P G i 1 N G i ^ EP , i 5 1,2,3 (1.1)

where P G i ,
N G i are (P 1 1)-, (N 1 1)-dimensional Lie operators of so(3);

EP , EN are (P 1 1), (N 1 1) unit matrices.

Essentially a Z2-graded algebra splits a bundle L 2 into the direct sum

L 2 5 L 2
1 1 L 2

2 (1.2)
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of self-dual and anti-self-dual 2-forms, respectively. An example of this

grading is the decomposition

so(4) > so(3) 1 so(3) (1.3)

into bundles of three-dimensional Lie algebras which were long ago identified

by de Wet (1971) with spin and isospin (based on some ideas of Eddington).

In a seminal paper Atiyah et al. (1978) use this decomposition on the Lie

group level to introduce, at least locally, the two complex spinor bundles V+

and V 2 ; the bundles of self-dual and anti-self-dual spinors. Then V 5 V+ 1
V 2 is isomorphic to the complexified Clifford algebra bundle of one forms
L 1 [Eddington (1948) called the Clifford algebra C4 a Sedenion algebra and

we will use his transparent Sedenion, or E-number, notation].

The purpose of this contribution is to show how a nuclear field theory

follows naturally from the structure of four-dimensional Riemannian geome-

try and to this end we shall consider the Hodge star mapping

*: L 2 ® L 2 (1.4)

as transforming a nucleus into its mirror image, i.e., (P, N ) ® (N, P).

Under these conditions

spin( s ) ® spin( s ); isospin(T3) ® -isospin(T3) (1.5)

are the self-dual and anti-self-dual forms. An example is given by the first

and fourth columns of Table I of Section 3. [Here we have denoted parity
by p and the spin by s, and in Section 2 we shall see how the nuclear charge-

spin-parity states are labeled by the partition [ l 1 l 2 l 3 l 4] of (A 5 N 1 P) and

its four permutations that appear in (2.6a).]

Furthermore, Atiyah et al. (1978) consider the decomposition of the

complexified Clifford algebra bundle

L 1 5 L 0
c 1 L 1

c

such that the image of V 2 in L 1
c is the subspace L 1,0 of (1,0) forms that

define a complex structure of the kind considered by de Wet (1995, 1996).

Now a complex manifold in turn decomposes into a sum of the spaces L 1,0

and L 0,1 of (1,0) and (0,1) forms (Kobayashi and Nomizu, 1969, Chapter

IX), so it is natural to identify the space L 0,1 with the self-dual form s
associated with V+. Then its conjugate

p i 5 EN ^ P G i 2 N G i ^ EP (i 5 1,2,3) (1.6)

lies in L 1,0 (Kobayashi and Nomizu, 1969). We shall see in Section 2 how

p is parity, but for the moment simply observe that this definition is also

consistent with Table I as described in Section 3. The six operators s i , p i

are generators of O (4).
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Now a complex structure occurs only on fermions (odd A ), the even A
nuclei being characterized by Euclidean structure, and an example of the

decomposition of the two complex manifolds carrying 9Li, 9C is

9Li: 6C[3303] 5 34( s 1 p ) 1 9( s p 2 1 s 2 p ) 1 ( s 3 1 p 3) (1.7a)

9C: 6C[3033] 5 34( s 2 p ) 1 9 ( s p 2 2 s 2 p ) 1 ( s 3 2 p 3) (1.7b)

which is manifestly CP-symmetric because T3 ® 2 T3 is accompanied by

p ® 2 p . Equation (1.7a) confirms the decompositions given by Kobayashi

and Nomizu (1969) and Salamon (1989), where the Wigner coefficients are

the number of times the irreducible spin representations

S 1,1 5 ( s 1 p ), S 2,1 5 ( s p 2 1 s 2 p ), S 3,0 5 ( s 3 1 p 3) (1.8)

are contained in the subspaces L 1,1, L 2,1, L 3,0 of L 3 which are embedded in

the Clifford algebra of the A coordinates of s , p and their products [cf. Lawson
and Michelsohn (1989) for the isomorphism between Clifford algebras and

exterior products].

An inspection of (1.7a) and (1.7b) shows clearly that fermion CP invari-

ance follows from the decompositions S1,1, S2,1, S3,0 of the complex manifold.

Moreover, since such a decomposition applies only to the state [3303] we
will associate the ground state with the label [ L ] [ [ L 1 L 2 L 3 L 4]. Then higher

energy states will be labeled by [ l ] 5 [ l 1 l 2 l 3 l 4]. These, however, are

characterized by nuclear decay, so are no longer in the same manifold.

In Section 3 it will be shown that the fermion manifolds have a Ricci-

flat Kaehler metric and are therefore Calabi±Yau. Recently there have been

several studies of the mirror symmetry of Calabi±Yau spaces (e.g., Strominger
et al., 1996), but the mirror nuclear manifolds appear to be isomorphic. For

example, in Section 3 the matrix representations of the CP-invariant operators

C[4324], C[4234] of, respectively, 13C, 13N are identical up to interchange of

rows and columns. These representations are derived by substituting (1.1),

(1.6) into the equations (3.8a) and (3.8b) [which are analogues of (1.7a) and

(1.7b)] and their rotational eigenvalues C 8[ l ] appear in the last column of
Table I. However, we can substitute directly in (3.8a) and (3.8b) using (3.9),

which is derived from a canonical labeling scheme suggested by (2.6a) of

Section 2. Again this labeling gives rise to an isomorphism with almost

identical rotational eigenvalues C[ l ] in the penultimate column of Table I.

In fact there are only tiny spin mutations (marked by asterisks) associated

with the states [2533], [4333] of 13C. As discussed in Section 3, these are
believed to be due to Yang±Mills interaction even though the group O (4)

has no deformation parameter q in its commutation relations and is not a

quantum group. Instead, interaction simply changes the spins of two neutrons

in paired states, so we have replaced quantum group theory by supersymmetry!
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In line with the aims of this contribution we have outlined several

correspondences between nuclear theory and the structure of Z2-graded alge-

bras, which of course also play a role in quantum group theory as outlined
by Manin (1991, Chapter 4). However, because the left ideals (2.3) of the

Dirac ring are bra vectors generated by a density operator C (A) (Biedenharn

and Louck, 1981, § 7.7), we may also consider our model as a canonical

ensemble of nucleons (Prigogine, 1995). In fact it will appear that the partition

(2.5) is precisely into the states:

l 1 5 number of neutrons with a positive spin and negative parity

l 2 5 number of neutrons with a negative spin and positive parity

l 3 5 number of protons with a negative spin and negative parity

l 4 5 number of protons with a positive spin and positive parity

of a canonical ensemble.

Then the self-dual and anti-self-dual forms are the pairs { l 1; l 4}, { l 2;

l 3}, and each of the points on the microcanonical surface has the same

probability of representing the system. In particular the radii of surface

curvature should be uniformly distributed and this can be verified by actually
calculating sectional curvatures from the metrics of Section 3.

We can now move on to an outline of how a Yang±Mills field is

incorporated.

2. FIELD THEORY

The basic theory has been reviewed in Section 1 of de Wet (1994), so

only an outline will be given here. The method used constructs tensor products

in the enveloping algebra A ( g ) of the Dirac ring of an irreducible self-

representation

1

4
C 5 (iE4 c 1 1 E23 c 2 1 E14 c 3 1 E05 c 4)e (2.1)

with itself. Here Eddington’ s E-numbers are related to the Dirac matrices by

g n 5 iE s n , E m n 5 E s m E s n , E 2
m n 5 2 1,

E m n 5 2 E n m , m , n 5 1, . . . , 5

and the commuting operators E23, E14, and E05 are, respectively, independent
infinitesimal rotations in 3-space, 4-space, and isospace that correspond to

the spin s , parity p , and charge T3 carried by a single nucleon. The parameters

c 2, c 3, c 4 are half-angles of rotation and e is a primitive idempotent of the

Dirac ring; E4 is the unit matrix.
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A rotation through 180 8 about x will change spin up to spin down and

if this is followed by a rotation of 180 8 about t, x can go to 2 x without

inverting time, but instead changing to a left-handed coordinate system. Thus
we associate the rotation E14 about x in 4-space with a parity reversal E14

® 2 E14, and this way the time coordinate is `rolled up’ so that the Lorentz-

invariant representation (2.1) can describe a nucleon in 3-space.

The basis elements of A ( g ) are the 4A 3 4A matrices (A 5 N 1 Z )

E l
m n 5 E4 ^ . . . ^ E4 ^ E m n ^ E4 ^ . . . ^ E4

with E m n in the 1th position. The elements E l
m n , E l 1 1

m n commute, and A ( g ) is

found to have the following generators:

G (A)
n 5

1

2
(E 1

0 n 1 E 2
0 n 1 . . . 1 E A

0 n ), n 5 1 , . . . , 5 (2.2a)

s (A)
m n 5 [ G (A)

m , G (A)
n ] 5

1

2
(E 1

m n 1 E 2
m n 1 . . . 1 E A

m n ) (2.2b)

h (A)
n 5 E0 n ^ . . . ^ E0 n 5 E 1

0 n E 2
0 n . . . E A

0 n (2.2c)

h (A)
m n 5 h (A)

m h (A)
n 5 E 1

m n E 2
m n . . . E A

m n , m , n 5 1, . . . ,5 (2.2d)

Then the irreducible representations, or minimal left ideals, of A ( g ) are

C (A) 5 o
l

C[ l ] P[ l ] (2.3)

with

C[ l ] 5 i l 1 C (E 1
23 . . . E

l 2
23 E l 2 1 1

14 . . . E
l 2

1 l 3

14 E
l 2 1 l 3 1 1
05 . . . E A 2 l 1

05 ) (2.4)

if C denotes summation over the N[ l ] 5 A!/( l 1! l 2! l 3! l 4!) combinations of the

basis elements appearing in the bracket. Here [ l ] [ [ l 1 l 2 l 3 l 4] is a partition

l 1 1 l 2 1 l 3 1 l 4 5 A (2.5)

and

P[ l ] 5 i 2 A (i A c l 1
1 c l 2

2 c l 3
3 c l 4

4

1 h (A )
23 c l 1

2 c l 2
1 c l 3

4 c l 4
3 1 h (A )

14 c l 1
3 c l 2

4 c l 3
1 c l 4

2

1 h (A)
5 c l 1

4 c l 2
3 c l 3

2 c l 4
1 ) e A (2.6a)

is a projection operator satisfying

P 2
[ l ] 5 P [ l ] c , c [ c 1 c 2 c 3 c 4 (2.6b)

Also, e l 5 e ^ . . . ^ e 5 e 1 e 2 . . . e A is a primitive idempotent in A ( g ), so

that (2.6a) has the same form for A nucleons as the basic representation (2.1).
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By studying (2.6a), it can be shown that a canonical labeling scheme

associates ( l 3 1 l 4) with the number of nucleons with a positive charge (i.e.,

the first two terms represent a nucleus and the last two terms its mirror
image), ( l 2 1 l 3) the number with a given spin s , and ( l 2 1 l 4) the number

with a particular parity p . Thus each partition (2.5) represents a charge-spin-

parity state of a nucleus, and by choosing 4 3 4 matrix representations for

E23, E14, E03 and constructing fibers that include every possible exchange of

spin, parity, and charge between nucleons, such that the collective quantum

numbers remain the same, it may be shown that C[ l ] partitions beautifully
into a de Rham decomposition of isobaric multiplets. Under these conditions

the 4A 3 4A matrices (2.2) shrink to (1.1), (1.6) with rows labeled by the

fibers [ l ], where s 1 [ s (A)
23 , p 1 [ s (A)

14 are two of the six generators of O (4).

In this way the nucleons interact by means of a Yang±Mills gauge field

which can be determined by calculating the connections in the fiber bundle.

This has been done by de Wet (1966) by exponentiating C[ L ] and finding the
Ricci-flat Kaehler metric of the resulting Calabi±Yau space or torus. In Section

3 this will be shown to be Einstein, which ties in with the ideas of Capovilla

et al. (1990) that, say, that an SU(2) connection characterizes a solution of the

source-free Einstein field equations. In fact, a compact 4-manifold acted on by

the group SU(2) must be a Ricci-flat torus (Salamon, 1989, p. 106). In other
words, the nuclear metric is a solution of the source-free Einstein equations!

From another point of view we can regard the Dirac algebra as the

infinitesimal ring of Minkowski space and therefore as a tangent space to 4-

dimensional space-time in the spirit of Ashtekar (1988). The representations

of the tangent space that give us the internal symmetries s , p , T are by

construction a soldering form (Ashtekar et al., (1988)) and exponentiation
must necessarily take us back to source-free Einstein space.

Returning to (2.4), the bases of the form L l 2, l 3 are contained in C[ l ]

without the E05 elements, which, as we shall see, are needed only to character-

ize a particular member of an isobaric multiplet. Thus in the next section,

where an outline of the decomposition (1.7) is given, it will become clear

that a new ( p,q) subspace appears whenever the products s 0 p 0 of

s 0 5 2 s 1 5 (E 1
23 1 . . . 1 E A

23), p 0 5 2 p 1 5 (E 1
14 1 . . . 1 A

14) (2.7)

contain terms with the same indices. Under these conditions p 1 q # l 2 1 l 3.

Although a general nuclear state is labeled by [ l ], there is only one

state [ L ] 5 [ L 1 L 2 L 3 L 4] having the decomposition (1.7) associated with the

ground state. Then [ L ] itself carries all the spin-parity states [ l ] of Table I.

These label the rows of an irreducible submatrix

m 5 F B

2 Bt G (2.8)
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of C[ L ] which has the holomorphic coordinates zk 5 6 i l k , where l k is the

eigenvalue associated with [ l ]k by means of the correspondence (3.9) and is

real for the submatrix B.
In fact zk , zk , characterize the horizontal subspace of a complex

Grassmann or Kaehler manifold (Kobayashi and Nomizu, 1969, Chapter IX)

and because it is also Ricci-flat and Kaehler it is a twistor space (using the

definition of Lawson and Michelsohn, 1989, Chapter IV, Section 9). We shall

see in Section 3 how a metric is obtained.

3. AN EXAMPLE; CARBON-9, 13

In this section the ideas outlined above will be brought together with

an example that exhibits spin mutation and at the same time illustrates in

more detail how the decomposition (1.7) of a complex manifold is obtained.
We begin by replacing (2.4) with

C[ L ] 5 i L 1 s L 2
0 p L 3

0 T L 4
0 . 2 o

l
i l 1 s l 2

0 p l 3
0 T l 4

0 (3.1)

where in addition to (2.7)

T0 5 2 G (A)
5 5 (E 1

05 1 . . . 1 E A
05)

The real quantum numbers s, p, and T3 5 1/2 (Z 2 N ) of spin, parity, and

charge are

s 0 5 2is, p 0 5 2iP, T0 5 2iT3 5 i (Z 2 N ) (3.2)

which show how the quantum numbers of individual nucleons are additive.

The summation contains all those terms arising from repeated indices
E j

23E
j
23; E j

23E
j
14; E j

23E
j
05; E j

14E
j
05 that yield a single term according to the

multiplication table

Z E
j
23 E

j
14 E

j
05

E
j
23 Z i 2 iE

j
05 iE

j
14

E
j
14 Z iE

j
05 i 2

iE
j
23

E
j
05

Z
iE

j
14 iE

j
23 i 2

(3.3)

Z
An elementary example is

s 0T0 5 P (E i
23 E j

05) 1 i p 0 (3.4a)

where P denotes summation over the A!/(A 2 n)! permutations of the n genera-

tors in the bracket. Then

C[(A 2 2)101] 5 i (A 2 2)P (E i
23E

j
05) 5 i (A 2 2)( s 0T0 2 i p 0) (3.4b)
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and if A 5 3, Z 5 1, T 5 2 i, so

C[1101] 5 ( s 0 1 p 0) (3.4c)

which characterizes the ground state of 3H. Now interchange s 0 % p 0 in (3.4b)

to get

C[(A 2 2)011] 5 i (A 2 2)( p 0T0 2 i s 0) (3.4d)

Then if A 5 3, Z 5 2, T 5 i, we have

C[1011] 5 ( s 0 2 p 0) (3.4e)

which charaterizes the ground state of 3He. Equation (3.4c) is the irreducible

spin representation L 1 of (1.8), which occurs once only, and (3.4a) is an

example of a single term p 0 arising from E i
14 5 E i

23 E i
05 (i 5 1, . . .,A ).

Because T0 is a scalar, this term dictates the size of the subspace L 1.

Let us now `add’ another nucleon by multiplying (3.4a) by
p 0 5 (E 1

14 1 . . . 1 E A
14) to obtain

s 0 p 0 T0 5 P (E i
23 E j

14 E k
05) 1 i {P (E i

23 E j
23) 1 P (E i

14E
j
14) (3.5a)

1 P (E i
05 E j

05)} 1 Ai3

where

s 2
0 5 P (E i

23 E j
23) 1 Ai2;

p 2
0 5 P (E i

14 E j
14) 1 Ai2, (3.5b)

T 2
0 5 P (E i

05 E j
05) 1 Ai2

Thus

C[(A 2 3)111] 5 i (A 2 3)P (E i
23E

j
14E

k
05)

5 i (A 2 3)[ s 0 p 0 T 2 i ( s 2
0 1 p 2

0 1 T 2
0 2 3Ai2) 2 Ai3] (3.5c)

Then if A 5 4,Z 5 2, T0 5 0,

C[1111] 5 s 2
0 1 p 2

0 1 8 (3.5d)

which characterizes the ground state of 4He found to have only one spin

configuration. In this case there is no mirror nucleus and A is even, so there
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is no decomposition like that of (1.7). We are in fact in a vertical subspace

h of the tangent space to the boson manifold with a matrix representation

C

|
A |

|
|

2 2 2 2 2 2 2 2
|
|
|
|

(3.6)

Clearly the process may be continued until ultimately the invariant operator
for 9Li is

C[3303] 5 i 3 P (E i
23 E j

23 E k
23 E l

05 E m
05 E n

05)/(3! 3!) (3.7)

which yields (1.7a) after writing T0 5 i (Z 2 N ) 5 2 3i and making use of

subsidiary relations such as (3.5b). When A 5 13 we find

13C: 2 12C[4324] 5 3089 ( s 0 2 p 0) 1 151( s 0 p 2
0 2 s 2

0 p 0)

1 135 ( s 3
0 2 p 3

0) 1 3( s 3
0 p 2

0 2 s 2
0 p 3

0)

1 ( s 0 p 4
0 2 s 4

0 p 0) 1 ( s 5
0 2 p 5

0) (3.8a)

13N: 2 12C[4234] 5 3089( s 0 1 p 0) 1 151( s 0 p 2
0 1 s 2

0 p 0)

1 135( s 3
0 1 p 3

0) 1 3( s 3
0 p 2

0 1 s 2
0 p 3

0)

1 ( s 0 p 4
0 1 s 4

0 p 0) 1 ( s 5
0 1 p 5

0) (3.8b)

and once again we have precisely the decomposition given by Salamon (1989,

p. 33) of L 5 5 L L 2 1 L 3.

Now if we assume, in accord with the canonical labeling suggested by
(2.6a), that ( l 2 1 l 3) is the number of nucleons with negative spin s and

( l 2 1 l 4) the number with positive parity p , then we can determine the

eigenvalues of C[ L ] associated with each configuration [ l ] simply by substitu-

tion of

s 0 5 {A 2 2( l 2 1 l 3)} i, p 0 5 {2( l 2 1 l 4) 2 A}i (3.9)

in (3.8). These are eigenvalues without any interaction because as yet no use

has been made of (1.1), (1.6). However, we can also substitute directly from
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these equations [remembering from (2.7) that s 0 5 2 s 1, p 0 5 2 p 1] and use

the standard representations of so(3) for G 1 to find a matrix representation

m of C 8[ L ]. The matrix representations of 13N and 13C are identical up to an

exchange of rows and columns and Table I (which does not show repeated

eigenvalues) compares the eigenvalues of C[ L ] and C 8[ L ]. Because of the parity

change columns 1 and 4 will also yield the same eigenvalues, as will columns

2 and 3 up to a sign change caused by s 0 ® 2 s 0. Those states associated

with the matrix representation C 8[ L ] in the last column are marked by an

asterisk and have repeated eigenvalues except when l 3 5 l 4 5 3.

It is apparent that only the spin-parity states [2333], [4333] exhibit a

tiny mutation of 2/900. However, if the eigenvalues of these states are inter-

changed so that the ground state [4333] has the eigenvalue 2 460 instead of

2 468, and [2533] assumes 468, not 460, the mutations disappear. Thus these

two states are paired, differing only in the number of neutrons with negative

spin, so the introduction of a Yang±Mills field simply changes the spin

of two neutrons in the paired states, which amounts to a supersymmetric

transformation. Another example of paired states is given by Fig. 1 of de

Table I. Coherent States of 13C, 13N

13C 13N Matrix

s 1 2 2 1 13C 13N representation

p 2 1 2 1 l 1 l 2 l 3 l 4 l 4 l 3 l 2 l 1 (C[ l ] 1 3500) C8[ l ] 1 3500

l 1 l 2 l 3 l 4 l 2 l 1 l 4 l 3 l 3 l 4 l 1 l 2 l 4 l 3 l 2 l 1 s 0 p 0 s 0 p 0 3600 3600

7006 0760* 0670* 6007 13i 2 i 13i i 35/9 35/9

7015* 0751 1570 5107* 11i 2 3i 11i 2 3i 0 0

7024 0742* 2470* 4207 9i 2 5i 9i 5i 1.4 1.4

7033* 0733 3370 3307* 7i 2 7i 7i 7i 56/90 56/90

6106* 1660 0661 6016* 11i i 11i 2 i 5/9 5/9

6115 1651* 1561* 5116 9i 2 i 9i i 2/3 2/3

6124* 1642 2461 4216* 7i 2 3i 7i 3i 114/90 114/90

6133 1633* 3361* 3316 5i 2 5i 5i 5i 68/90 68/90

5206 2560* 0652* 6025 9i 3i 9i 2 3i 1 1

5215* 2551 1552 5125* 7i i 7i 2 i 10/9 10/9

5224 2542* 2452* 4225 5i 2 i 5i i 1 1

5233 2533* 3352* 3325 3i 2 3i 3i 3i 99/90* 99.2/90

4306* 3460 0643 6034* 7i 5i 7i 2 5i 86 /90 86 /90

4315 3451* 1543* 5134 5i 3i 5i 2 3i 88/90 88 /90

L 4324* 3442 2443 4234* 3i i 3i 2 i 79.6/90 79.6/90

gs4333* 3433 3343 3334* i 2 i i i 75.8/90* 76 /90
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Fig. 1. Instanton on 9C manifold.
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Wet (1995, 1996), where X4 is the ground state [3033] of 9Li and X5 could

be the state [3321].

Yang±Mills fields do not change the energy, so there can be no dissipation
due to spin mutations (this would lead to the collapse of nuclei to a zero-

spin state). Thus there must either be supersymmetry or the mutation is

carried by nucleons moving on two-dimensional toroidal surfaces in such a

way as to be anyons.

To find the Kaehler metric on the fermion manifolds we need first to

find exp(C[ L ] u ), which has been treated in some detail by de Wet (1994,
1995, 1996). Specifically

e m u 5 m o
n

k 5 0,1,. . .

Fk ( m ) cos l k u
i l kFk (i l k)

1 i o
n

k 5 1, 2,. . .

Fk ( m ) sin l k u
Fk (i l k)

(3.10)

where m is an irreducible subspace containing [ L ] of C[ L ], {1; l 2, . . .; l n}

are normalized positive, distinct, and real eigenvalues of the subspace B of

(2.8), and

F0 ( m ) 5
F ( m )

m
, Fk ( m ) 5

F ( m )

( m 2 1 l 2
k)

, Fk ( m )Fl ( m ) 5 0

if

F ( m ) [ m ( m 2 1 1)( m 2 1 l 2
2) . . . ( m 2 1 l 2

m) 5 0 (3.10a)

Writing (3.10) as

e m u 5 Z0 (cos u ) 1 Z1 (sin u ) 5
Z0 Z1

2 Z1 Z0

we can now follow Kobayashi and Nomizu (1969, Chapter IX, §6) and Wong

(1967) to find the metric on a complex Grassmann manifold, i.e.,

ds2 5 Tr
dT

(1 1 TT t)
?

dTt

(1 1 TT t)
(3.11)

where

T 5 Z1Z
2 1
0 5 2 T t 5 m o

n

k 5 1,2, . . .

i (Fk( m )/ m ) tan l k u
Fk(i l k)

(3.11a)

T Tt 5 o
n

k 5 1,2, . . .

Kk( m ) tan2 l k u (3.11b)
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Here T t and dT t are the conjugate transposes of T and dT, and

Kk( m ) 5 i l kFk( m )/Fk (i l k) m (3.11c)

is idempotent, so that (3.11) reduces to the flat measure carried by a torus,

namely

ds2 5 o
n

k 5 1,2, . . .
dzk dzk , zk 5 i l k u (3.12)

However, a translation to the normalized canonical form

{0; 1; l 2, . . .; l n}, n # p (3.13)

where { l 2; . . .; l n} are all positive, involves adding or subtracting an angular
momentum l 0 and then dividing by l t 5 ( l 1 6 l 0), which may be absorbed

in u and does not change the geodesics, although there is a frequency change

in the wave function e m s . Examples of the translation are given in the last

columns of Table I.

The effect of the translation is to multiply (3.11a) by tan l 0 u , which
introduces the new distorted metric

ds2 5 gkk (d l k u ) d ( 2 l k u )

5 d ( l k u ) d ( 2 l k u ) o
k

m
l k

Kk( m ) g ( l k u ) o
k

m t

l k

Kk ( m t) g ( 2 l k u ) (3.14)

with

g ( l k u ) 5 2 g ( 2 l k u ) 5 tan l 0 u sec2 l k u /(1 1 tan2 l 0 u tan2 l k u )

Here m 5 2 m t, Kk ( m t) 5 Kk( m ) and k 5 l k u are the p distinct coordinates

of B in (2.8); k 5 2 l k u and 6 i l k are the coordinates of m .
We observe that (3.14) is Einstein according to the definition of Atiyah

et al. (1978) because only even products of m occur, which means a diagonal

representation like (3.6). In other words, the fermion metric is a solution of

the source-free Einstein equations.

This also ensures that the Ricci tensor vanishes, but the sectional
curvature

K 5 Rkkkk 5
- 2gkk

- k - k
2 o

p - 2gll

- l - l
(3.15)

does not, because curvature is determined by the orientation of the remaining
p-planes. Thus a spinor field corresponding to the state [ l ]k and propagated

parallelly only around the section kk will return to its original value, which

is precisely the condition found by Green et al. (1993, Chapter 15) to show

that a Calaba±Yau space or K3 surface carries a string field.
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The sectional curvature K has been calculated by de Wet (1996) for 9Li

and its mirror nucleus 9C; a rough sketch is provided by Fig. 2 of that

reference. If, however, we regard the nucleus as a canonical ensemble, then
the radii of surface curvature should be uniformly distributed, and if we

assume that the principal radii of curvature are both equal to R, then to the

scales used in Fig. 2,

64

R
5 ! K ’ tan

5 u
3 1 1 2 tan

5 u
3 2 F o

7

k 5 1, . . .

2 sec4 l k u tan2 l k u

(1 1 tan2 l k u tan25

3
u )2 G

1/2

(3.16)

where

l 5 {0; 1±2;
5±6; 1; 4±3;

3±2;
5±2; 5}

Figure 1 is a plot of 64/R versus u over the region of u covering the instanton
2 on the surface of 9C, and integration of the density function gives the

uniform probability law shown by the straight line (to a different scale).

There is a point of inflection very near 375 8 , which could be the reason for

decay to 9B 1 b + after 126 msec when the toroidal manifold becomes

an orbifold.

4. CONCLUSION

Expansion of (3.10a) leads to the relation

Fk( m ) 5 m 2n 2 1 1 b 1 m 2n 2 3 1 b 2 m 2n 2 5 1 . . . 1 b n m (4.1)

where m 3 ® 2 m 3, m 5 ® m 5, m 7 ® 2 m 7, etc., by (2.8) and

b 1 5 l 2
1 1 l 2

2 1 . . . 1 l Ã2
k 1 . . . . 1 l 2

n ( l k 5 0) (4.1a)

b 2 5 l 2
1 l 2

2 1 l 2
1 l 2

3 1 . . . 1 l 2
1 l 2

n 1 . . . l 2
n 2 1 l 2

n ( l k 5 0) : (4.1b)

b n 5 l 2
1 l 2

2 . . . l Ã2
k . . . l 2

n 5 Det( m k) ( l k 5 1) (4.1n)

Equation (4.1n) may be recognised as the Slater determinant of the antisym-

metrized combination of all one-fermion orbits excluding the state [ l ]k. If

the particles are independent, there are A! ways of distributing A fermions

among each configuration of the A orbits n 1 n 2 . . . n A; however, in our case
[ l ]k is a coherent state consisting of N[ l ]k 5 A!/( l 1! l 2! l 3! l 4!) configuration

coordinates with the same net values of spin, parity, and isospin. In fact the

[ l ]k are fibers whose delineation yields the rotational character of m , so Fk( m )

is a sum of correlations of many-particle and rotational states such that the
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number of possible many-particle states is restricted by rotational possibilities.

In particular when the Slater determinant is unity, signifying that all the orbits

n 1 n 2 . . . n k are filled, m 2n 2 1 is a measure of all the rotational possibilities of
A spinning nucleons moving around one another and is heavily dependent

upon the number n of rotational eigenvalues.

In between these extremes, b i is a principal minor of m and we may

consider b n as a primary correlation, b n 2 1 as a secondary correlation, b n 2 2

a ternary correlation, and so on. This corresponds to the construction of

subdynamics by Prigogine (1995) and his co-workers (e.g., Antoniou and
Tasaki, 1993) which also depends on a density function approach.
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